Practice with Examples

For use with pages 345-351

GOAL

How to factor polynomial expressions and use factoring to solve polynomial equations

VOCABULARY

Two special factoring patterns are given below.

Sum of Two Cubes

Difference of Two Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

To factor by grouping, group pairs of terms that have a common monomial factor together, factor out this common factor and look for a pattern. An expression of the form $au^2 + bu + c$ where u is any expression in x is said to be in quadratic form.

EXAMPLE 1

Factoring the Sum or Difference of Cubes

Factor each polynomial.

a.
$$64x^3 + 1 = (4x)^3 + 1^3$$

$$= (4x+1)(16x^2-4x+1)$$

b.
$$54x^3 - 16 = 2(27x^3 - 8)$$

$$= 2[(3x)^3 - 2^3]$$

= 2(3x - 2)(9x² + 6x + 4)

Difference of two cubes

Exercises for Example 1

Factor the polynomial.

1.
$$x^3 + 125$$

2.
$$x^3 - 343$$

3.
$$64x^3 - 1$$

4.
$$8x^3 + 27$$

5.
$$3x^3 - 24$$

6.
$$1000x^3 - 729$$

Factor the polynomial.

25.
$$16x^4 - 81$$

26.
$$x^4 - 9$$

31.
$$2x^4 - 200x^2$$

32.
$$8x^4 - 18x^2$$

33.
$$27x^4 - 3x^2$$

34.
$$3x^4 - 3$$